

BIOINFORMATICS LABORATORY 代是对生体现不是

생물정보학을 활용한 DNA 분석

Geneme Information Research

순천향대학교 생명과학과 이용석 교수

- Bachelor's degree
- Master's degree of zoology
- Ph. D degree of zoology

Animal Morphology

LM histology

TEM/SEM

Taxonomy (Mollusks)

Immunohistochemistry

Immunocytochemistry

Postdoctoral research fellow

• Manager of bioinformatics Team Genomics Lab, Genome Research

Assitant Professor of Dept. of Parasitology

 Chief of climate change Regional Vector Surveillance Center

2005 → 2011

2011 → 2013

Associate Professor of Dept. of Life science and Biotechnology

순천향대학교 **SOON CHUN HYANG** UNIVERSITY

Prof. Marcelo Jacobs-Lorena

1990 **→ 2002**

2002 → 2005


Bioinformatics Chimpanzee genome

(NATURE published)

Helicobacter pylori, M. Tuberculosis etc bacterial genome and Several Animal EST projects

Bioinformatics & Genomics

P. vivax, P. berghei and Parasites EST Butterfly (P. rapae etc) genome, EST Regional Vector Surveillance Center

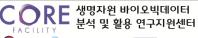
세계 최초 배추흰나비 과립병 바이러스 유전체 완전 해독

- 생명복지분야 소위원회 구성 및 운영 생명자원, 유전체, 줄기세포 소위원회 등
- 생명복지분야 예산 배분조정
- 국가출연연구소 예산 배분조정 총괼
- 국가 R&D 유사중복 TF 팀장

Bioinformatics & Genomics Threatened and Endangered Animal Genome Project (Genome-seq, RNA-seq)

2013 → 2018

Red List Genome Database



동물분류학,계통학, 생물정보학 강의

2019 → present

기후 변화 매개체 감시 거점 센터 Regional Vector Surveillance Center

http://www.rvsc.or.kr

순천향대학교 SOON CHUN HYANG

바이오데이터 엔지니어 인재양성 사업단

http://www.biodata.or.kr

순천향대학교 산학협력처장 생명과학과 이용석

이용석

순천향대학교 SOON CHUN HYANG UNIVERSITY

미래창조과학부

제 31091호

표 창 장

순천향대학교 조교수 이 용 설

위 사람은 평소 남다른 관심과 헌신적인 노력으로 환경보전에 기여한 공이 크므로 이에 표창 합니다.

2014년 12월 31일

환경부장관 윤 성 🚟

경력

- 순천향대학교 산학협력처장 (2024 현재), 순천향대학교 생명과학과 교수 (2024 현재)
- 교육부(한국연구재단)지정 중점연구소 "한국자생동물자원활용 융복합연구소" 연구소장 (2024 현재)
- 교육부 핵심연구지원센터(Core-facility) "생명자원 바이오빅데이터 분석 및 활용 연구지원센터" 센터장 (2024 현재)
- 한국연구재단 생명과학단 전문위원 (RB) (2022~2023 현재 ~ 2024 연장)
- 기후변화매개체감시거점센터 협의체 회장(충청3권 센터장, 前영남센터장) (2024 현재)
- 국가과학기술위원회(미래창조과학부) 연구개발조정국 생명복지조정과장 (4급공무원 ; 생명 및 출연연 RND예산 5조원 배분조정 담당) 역임 (2011-2013)
- 순천향대학교 산학협력단 연구특임부단장 역임 (2015)
- (사)한국패류학회 회장, 편집위원장, 전산정보위원장 (2024 현재)
- (사)한국곤충학회 회장, 전산정보위원장, 충남지부장 (2024 현재)
- **혁신클러스터학회** 운영위원 (연구개발특구진흥재단 지원단체) (2024 현재)
- 대한기생충열대의학회 평의원 (2024 현재)
- 보건복지부 보건정책심의위원회 위원(보건의료재난대응분과)
- "과학기술정보통신부" 바이오의료기술 추진위원단(과기부장관 임명) 위원
- 포스트게놈 다부처유전체사업 운영위원

논문실적(최근 5년)

- SCI(E) 급 33편, KCI급 21편
- 통산 200여편 논문 저술

연구비 수주실적(최근 3년)

- 정부연구비 수주 15건 (약 **127 억원**),

저술활동 실적

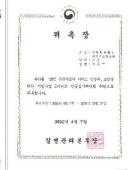
- 단백질체학 (번역서), 바이오안정성백서(2017, 2019) 생명과학의 이해, 필수생물학 4판, 산업곤충 (고등학교 교과서) 등

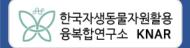
수상실적

- 보건복지부 장관 표창(2018.11)
- 질병관리본부장 표창 (2017.12)
- 순천향대학교 2016 우수학술연구상 수상 (2017.8)
- 환경부 장관 표창 (2014.12)

언론보도

- TV. 신문 포함 100 회 이상 (KBS, MBC, YTN 등)





순천향대학교 생명과학과 학과장 이용석 교수 정부부처 관련 위원회 주요 활동 현황

1.국가과학기술자문회의 에너지환경전문위원회 위원 (2021~2022)

2.한국연구재단 생명과학단 전문위원 (2022~2023)

3.질병관리본부 "DTC 유전자검사 서비스 인증심사위원" (2020.4월~현재)

4.과학기술정보통신부 "제2기 연구제도혁신기획단"(2018~2019)

5.과학기술정보통신부 NFEC "국가연구시설장비심의평가단" 위원 (2018~2020)

6.과학기술정보통신부 "바이오의료기술개발사업 추진위원회" 위원 (2017~2019)

7.해양·극지기초원천개발사업 추진위원회 위원

8.해양수산과학기술진흥원 전문평가단 해양수산생명분야 전문평가위원 (2017~2019)

9.포스트게놈다부처유전체사업 협의회 위원(2013~2018)

10.보건복지부 "보건의료기술정책심의위원회 보건의료재난대응분야 전문위원회 위원"(2017~2019)

11.질병관리본부 NIH 유전체센터 국립중앙인체자원은행 제4기 분양위원회 위원 (2017~2019)

12.금강유역환경청 "환경평가 전문가 자문단" 위원 (2017~2019)

13.낙동강유역환경청 "멸종위기종 인공 증식 심사위원회" 위원 (2007~2009)

14.미래창조과학부 "국가연구개발 우수성과 선정위원회" 분과위원(생명, 해양) (2017)

15.질병관리본부 "감염병 매개 모기 감시 및 방제 자문위원회" 자문위원 - 지카바이러스 대비 (2016)

16.질병관리본부 "유전자변형생물체 보건안전 전문가위원회" 분과위원 (2016~2018)

17.보건복지부 유전자변형생물체 보건안전 전문가 위원 (2015~2018)

18.보건복지부 질병관리본부 "평가관리전문위원회" 위원 (2015~2017)

19.보건복지부 "보건의료 R&D 기획 자문단" 위원 (2015~2017)

20.범부처감염병대응연구개발 추진위원회 "감염병연구포럼 기후변화감염병 분과위원" (2015~2017)

21.산업통상자원부 유전자변형생물체 위해성심사위원 (2015~2018)

국가과학기술자문회의 운영위원장(혁신본부장)

한국연구재단 이사장

질병관리청장

과학기술정보통신부 장관위촉

과학기술정보통신부 장관위촉

과학기술정보통신부 장관위촉

과학기술정보통신부 장관위촉

해양수산부 (KIMST원장)

다부처사업

보건복지부 장관위촉

질병관리본부장위촉

금강유역환경청장

낙동강유역환경청장

미래부장관위촉

질병관리본부장위촉

질병관리본부장위촉

질병관리본부장위촉

질병관리본부장위촉

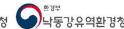
복지부장관위촉

질병관리본부장위촉

산업부장관위촉

기타 : 과기부(미래부), 해수부 부처평가위원/ DGIST 기관평가컨설팅위원단 간사 / 국가과학기술인력개발원, 특허청, 조폐공사, 국립생태원 면접위원 / 국립수산과학원 자체평가위원단장 / 농촌진흥청 자체평가 위원 / 예타사업 기술성평가위원회 보건의료분야 위원장 / 바이오그린21 동물유전체육종사업단 기획,평가위원

학회: 독성유전체학회(상임이사), 혁신클러스터학회(운영위원장), 한국곤충학회(수석부회장, 전산위원장), 한국패류학회(부회장, 편집위원장, 전산위원장), 대한기생충열대의학회(전산위원장)



생명과학과

1. 학과 소개

·순천향대학교 생명과학과는 45년 전통을 자랑하는 학과로 산학연관에 걸쳐 대한민국 사회를 선도하는 핵심 Opinion Leader를 매우 많이 배출한 학과입니다.(교수19명 등). 생명현상에 대한 기본지식과 연구를 바탕으로 하여, 생명과학 관련분야 및 타분야와 소통하고 응용할 수 있는 능력을 함양함으로써 국가와 지역 사회의 발전에 기여할 수 있는 인재를 육성합니다.

2. 학과 장점

- 우수한 연구력을 자랑하는 교수진! 학생의 꿈을 키워주는 학과!
- 순천향대학교 본교 학과 중 연구비 수주금액 1위 : 최근 3년간 금액 209.4억 원
- ∘ 교육부 지정 이공대학중점연구소 "한국자생동물자원활용 융복합연구소" 운영 (총사업비 77.4억)
- ◦교육부 NFEC 기초과학연구역량강화사업 '생명자원 바이오빅데이터 분석 및 활용 연구지원센터' 운영 (총사업비 43.2억)
- ◦과학기술정보통신부 주관 '지역혁신메가프로젝트사업' 충남권 대표대학 선정 (총 사업비 265.2억)
- 최근 5년간 학과 교수님 출간 논문 약 170여 편
- ·취업률 우수학과 : 2021년 일반학과 중 취업률 최상위권 79.6% 달성
- 대학원 진학률 우수학과 : 2021년 대학원 진학률 약 25%,
- ·교수 연구실에서 진행 중인 연구 프로젝트 참여 기회 제공 가능
- ·생명과학과 전용 바이오데이터 PC실 완비, 3, 4학년 방학 중 정부출연연, 국공립연구소 등 다양한 현장실습 참여 기회 부여 가능

3. 졸업 후 진로 ▶바이오관련 모든 분야로 취업, 진학이 가능한 학과 !!!

- · 취업 관련 분야
- 교육계 : 대학교수, 과학교사(중고등학교 생물학)
- 정부출연연, 국공립 연구소 : 한국생명광학연구원, 국립생태원(멸종위기종복원센터), 국립관, 중앙내수면 연구소, 충남 테크노파크, 국립중앙과학관, 충남발전연구원, 질병관리청, 환경과학원 등
- 소방방재청, 해양경찰청, 특허청, 보건직 공무원, 식품의약품안전관리청, 국립수산징흥원 자력병원, 특허사무소, 화장품회사, 바이오벤처회사, 의약품 관련업체 등
- •학과 전공관련 취득 가능 자격증 : 생물분류기사, 생물공학기사, 자연생태복원기사, 식물보호기사, 해양환경 기사, 해양생간기술사, 실험동물기술사 1·2급, 수질환경기사, 해양조사산업기사, 수산양식기술사, 환경공학기 사 등 바이오관련 모든 분야의 자격증 취득이 가능하며 중등 정교사2급 자격을 위한 교직과정 운영중

4. 자랑스러운 동문

•타대학 교수

80학번 한연수(전남대학교), 82학번 현성희(을지대학교), 84학번 최부영(서원대학교), 87학번 정성균(신한대학교), 92학번 나찬현(Johns Hopkins 의대), 김정환(국립경상대학교 의대), 조성진(충북대학교), 93학번 길영천(충북대학교 의대), 95학번 오창석(을지대학교), 96학번 안근재(제주대학교), 유승아(가톨릭대학교 의대) 등

• 순천향대학교 교수

80학번 **한만덕**(작고), 81학번 **신현웅**, 86학번 **남궁우**, 90학번 **이용석**, 96학번 **조용훈** 97학번 **정상목**, 99학번 **정동준**, 08학번 **황희주**

•정부출연연구소, 국공립연구소

80학번 이재정(충남테크노파크), 황규잠(질병관리청), 85학번 권오성(충남연구원 센터장), 96학번 이현수(헬스케어스파산업진흥원), 임치영(충남테크노파크), 99학번 강세원(한국생명공학연구원), 01학번 김근식(국립생태원 멸종위기종복원센터), 05학번 박소영, 한국일(국립낙동강생물자원관), 송하윤, 곽영호, 김강래(08학번) (국립수산과학원 연구원) 등

• 바이오 연구, 산업계

81학번 김영돈(HGS케미컬 대표), 백효현(시마즈스펙크롬 대표), 박동철(이노랩㈜ 대표), 84학번 이준연(한국 화학융합시험연구원 연구위원), 한재철(해양경찰청), 신영수(해양경찰청), 이영기(산업안전보건공단 연구위원), 강병희(아이월드제약 이사), 86학번 이훈섭(㈜프로펩 대표), 87학번 박상용(㈜아라 대표), 손민식(㈜바이오어 세이 대표), 88학번 방신원(대웅제약 영업본부소장), 89학번 김용석(일양약품 수석연구원(부장), 93학번 이영 준(EHL바이오 상무이사), 95학번 안영모(㈜한국비엠아이, 연구팀장), 97학번 심윤보(한국백신, 품질보증팀장), 04학번 추민규(해양경찰청연구원), 이상준((주)씨젠, 연구원), 08학번 왕태훈(㈜마크로젠), 09학번 김재훈(국립 수산과학원 연구원), 09학번 박태희(국립소방연구원 연구원), 10학번 홍양기(국립중앙과학관 연구원), 10학번 조항철(㈜인실리코젠) 10학번 박은비(㈜캔서롭 연구원), 11학번 전진영(국립환경과학원 연구원) 등

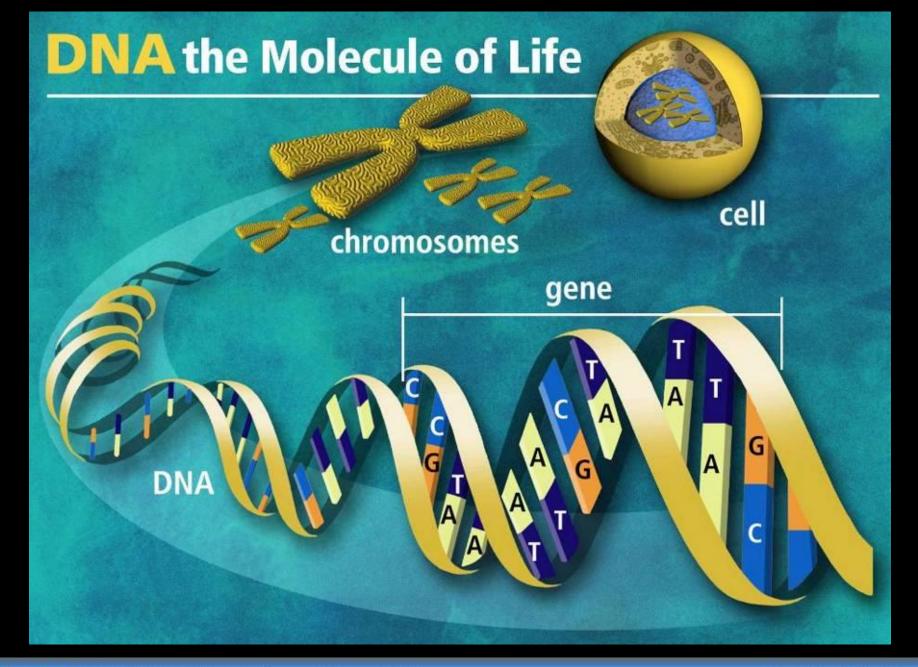
• 생명과학과 동문선배님들의 순천향대학교 발전기금 기탁

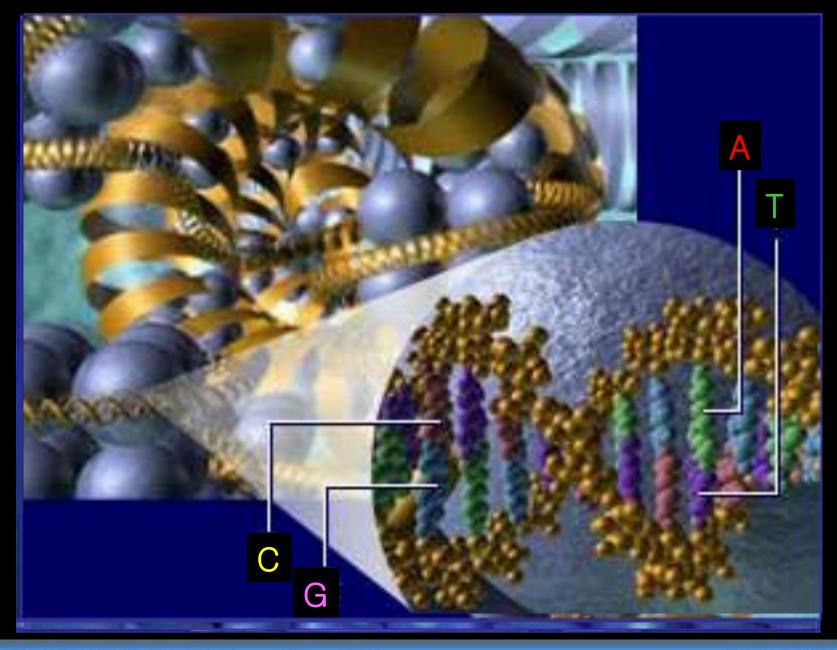
순천향대 동문 ㈜이노랩 박동철(81학번) 회장, 모교 발전기금 1억원 전달 순천향대 제9대 총동창회장 백효현(81학번), 모교 발전기금 1억원 전달

•영국의 글로벌 대학평가기관 THE 대학순위, 생명과학분야 국내 15위 달성

순천향대, 'THE 세계대학평가' 4개 분야 두각 의학·생명과학·컴퓨터과학·공학 등 4개 분야

순천향대학교는 최근 THE(Times Higher Education)에서 발표한 '2024 THE 세계대학평가' 영역별 순위에 서 의학, 생명과학, 컴퓨터과학, 공학 등 4개 분야가 글로벌 역량을 인정받았다고 27일 밝혔다. THE는 영국의 글로벌 대학평가기관이다. 2010년부터 다양한 지표를 토대로 전 세계 상위권 대학들의 순위를 매기고 있다. 순천향대는 ▲의학 분야 국내 15위, 세계 500위권 ▲생명과학 분야 국내 15위, 세계 600위 권 ▲컴퓨터과학 분야 국내 21위, 세계 600위권 ▲공학 분야 국내 26위, 세계 800위권에 이름을 올렸다. 특히 의학·생명과학 분야는 작년 기준 세계 순위권이 상승했다.





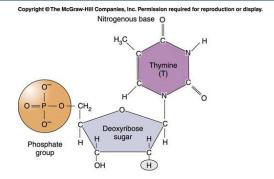
SCH

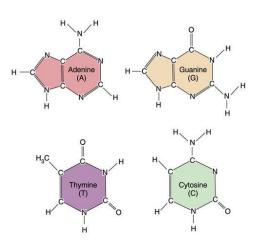
Genomics & Bioinformatics

SCH

모든 생물의 DNA 구조는 동일하다!

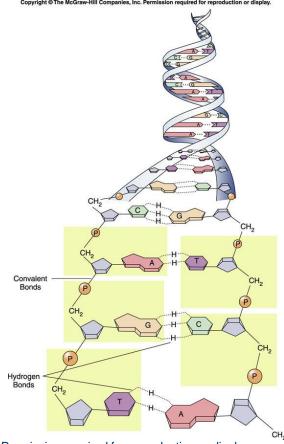
LIVE OF THE PROPERTY OF THE PR

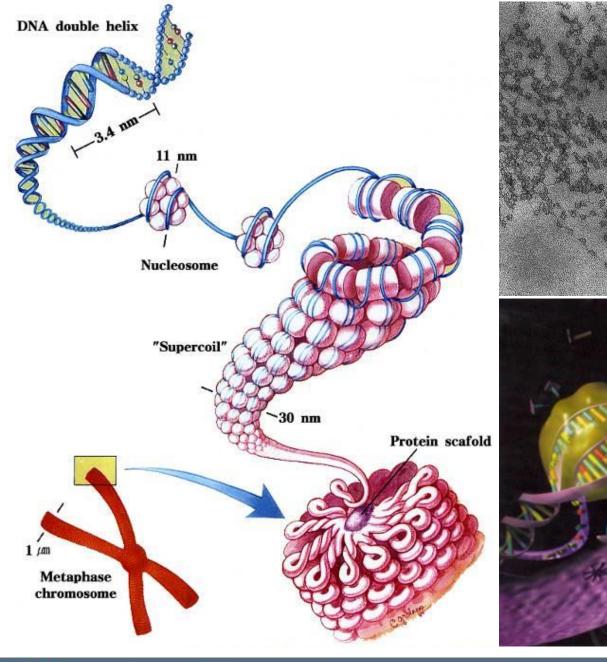


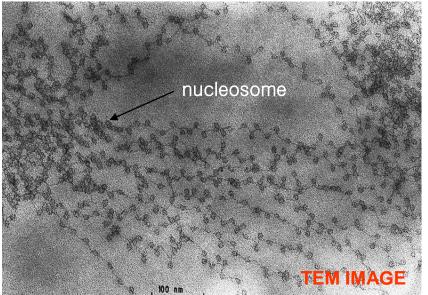


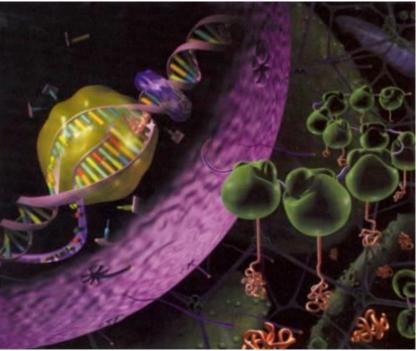
DNA Structure

- DNA is a nucleic acid.
- Nucleic acids
 - Large polymers made of nucleotides
 - 1. 당 A sugar molecule
 - Deoxyribose for DNA
 - Ribose for RNA
- 2. 인산 A phosphate group
- 3. 염기 A nitrogenous base
 - Adenine
 - Guanine
 - Cytosine
 - Thymine

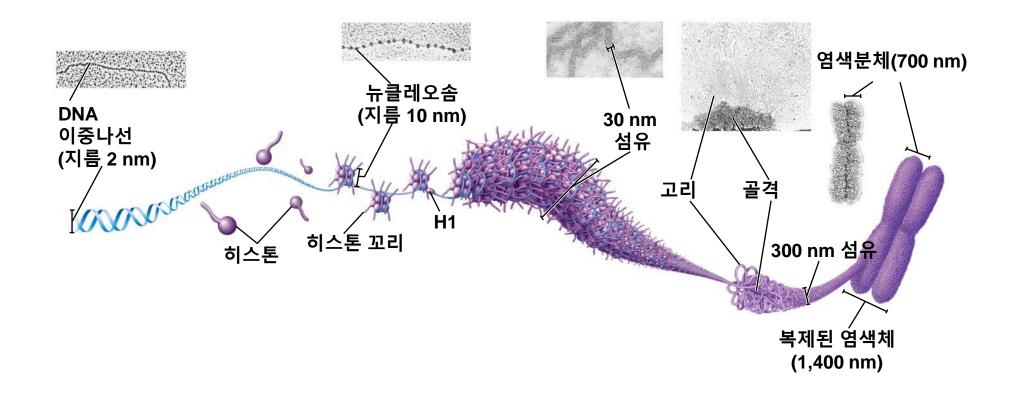


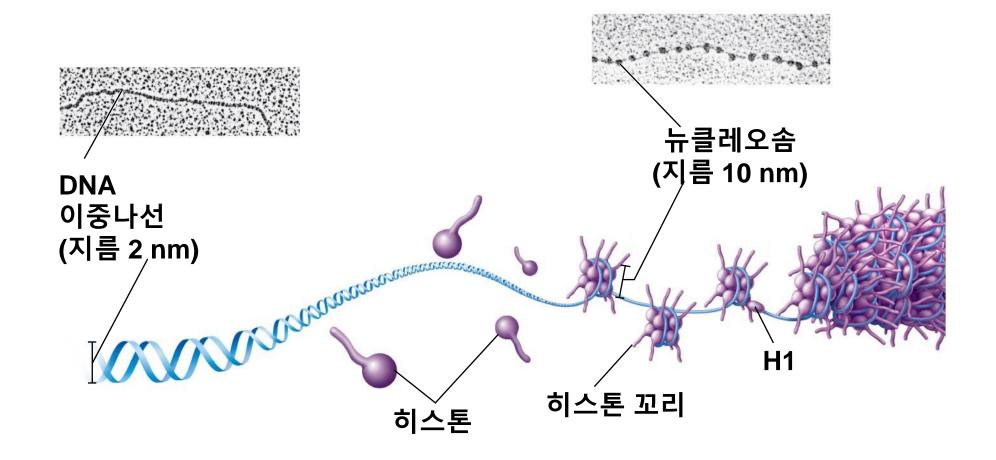

(a) DNA nucleotide

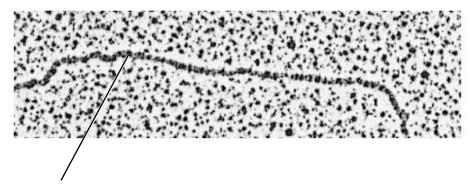


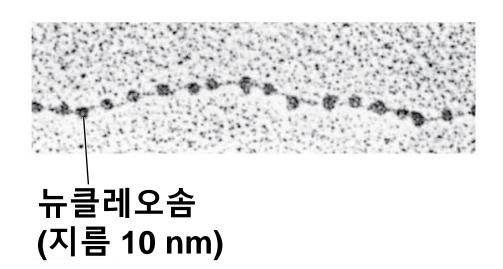

DNA Structure

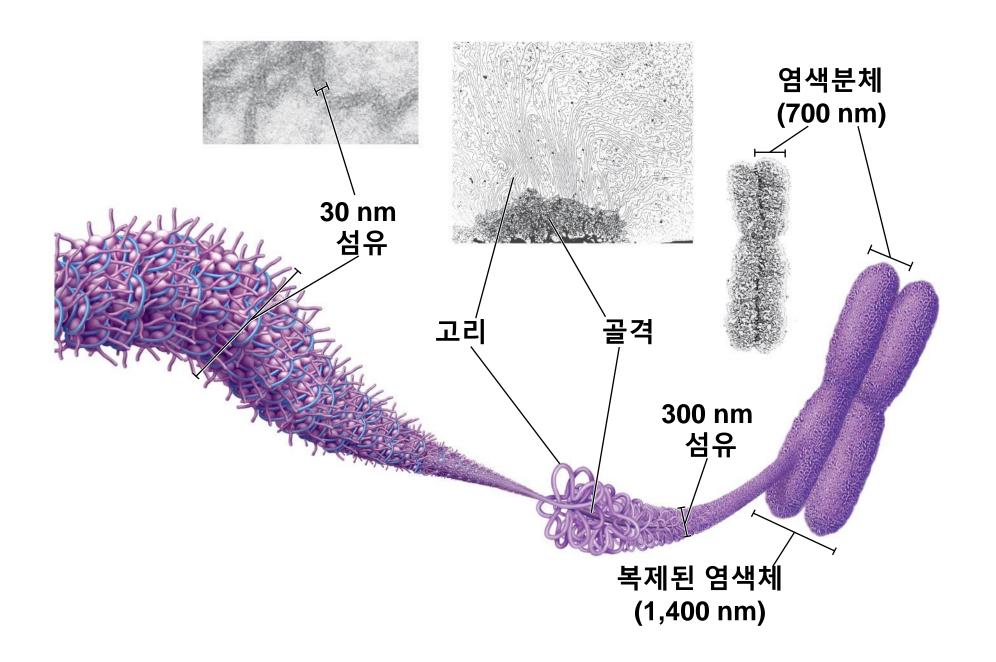
- DNA is double- stranded.
 - Held together by hydrogen bonds between the bases
 - A-T, G-C

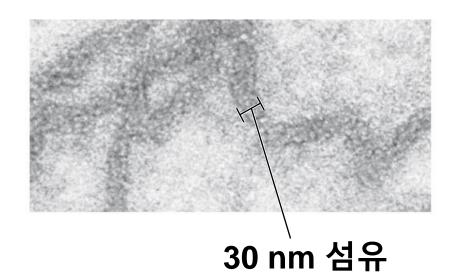


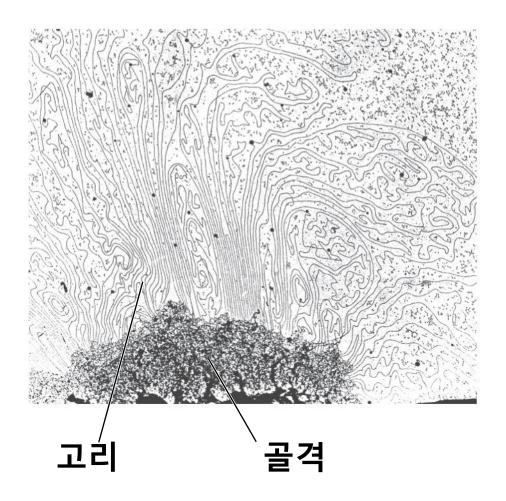




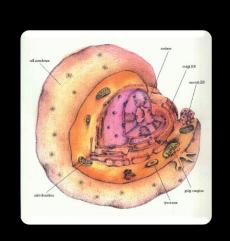








DNA 이중나선 (지름 2 nm)



염색분체 (700_{nm)}

유전체란 무엇일까?

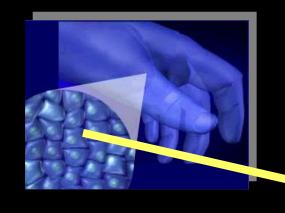
한 개의 세포 속에 들어 있는 DNA의 총합

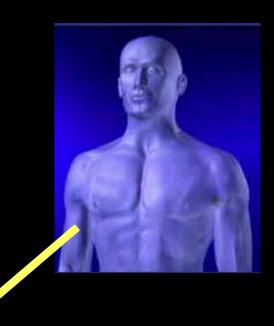
유전자(GENE) + 염색체 (CHROMOSOME)

-지놈-게놈-유전체

생물이 생존하는데 필수적인 최소한의 생물정보

THE THE PROPERTY OF THE PROPER

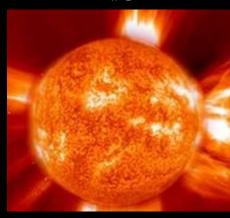

유전체암호 (생물정보)


사람의 세포 한 개엔 60억개의 염기가 있다.

사람의 유전체 길이는?

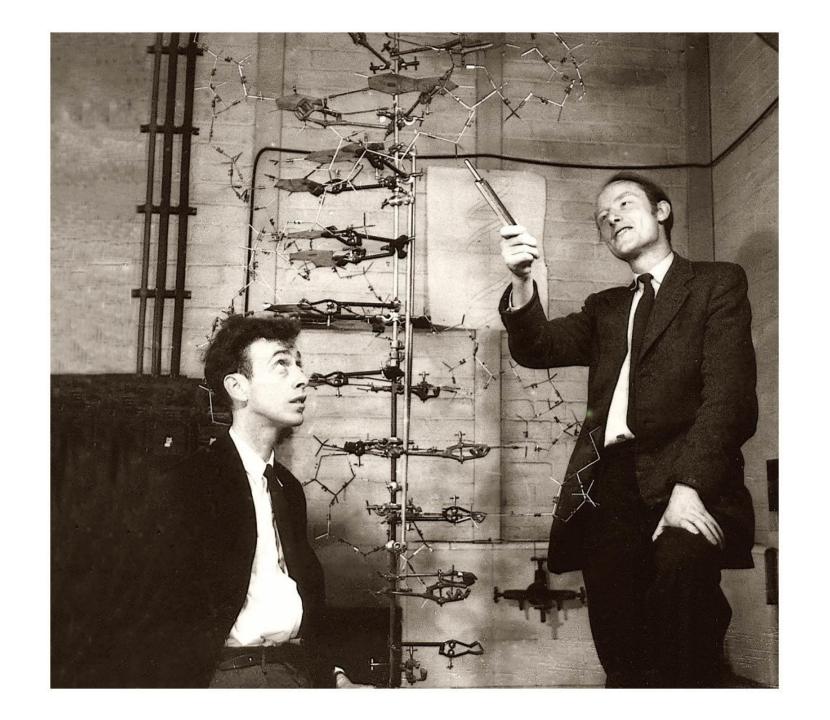
2m x 60조 세포 = ?

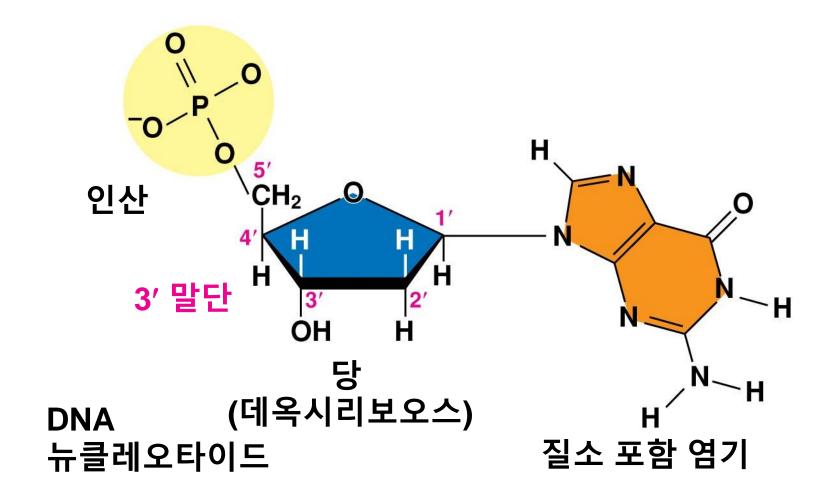
지구

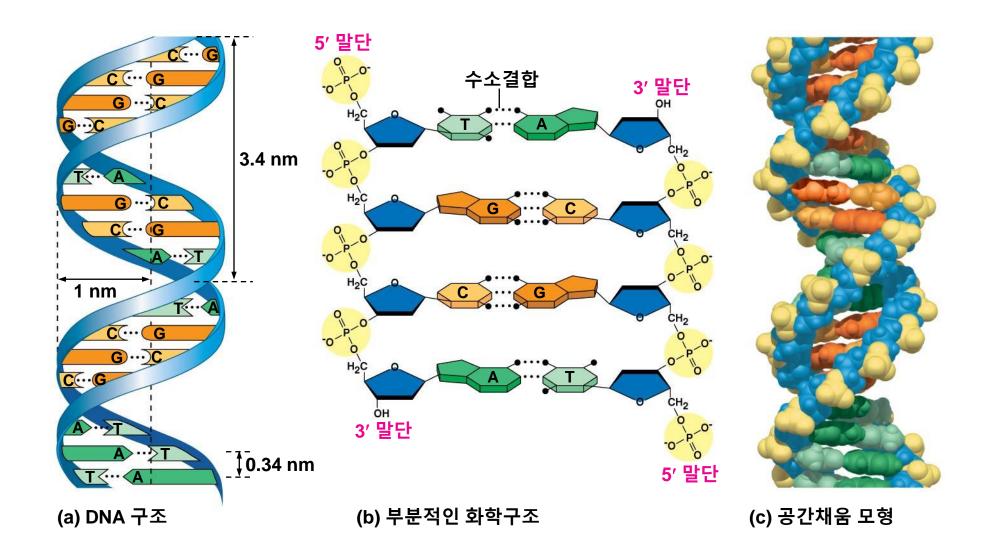


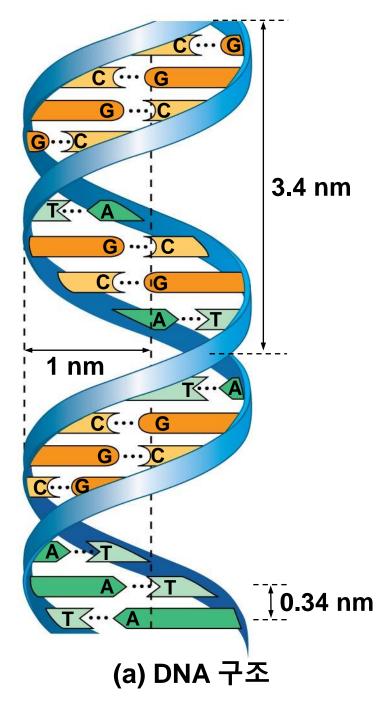
800회

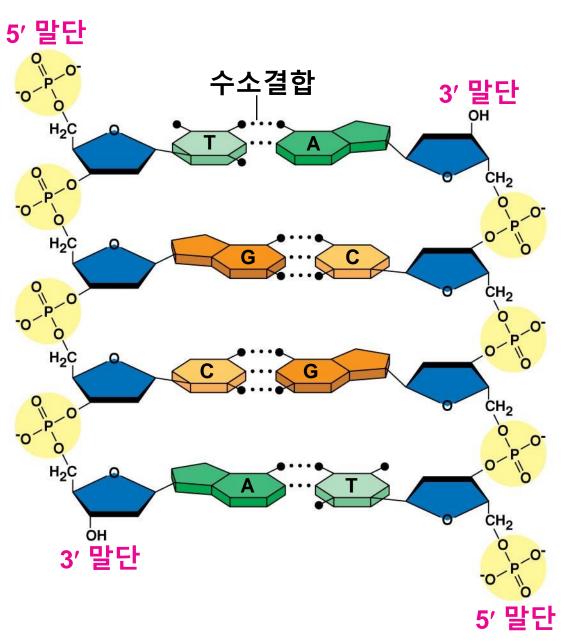
1억5천만 Km


태양

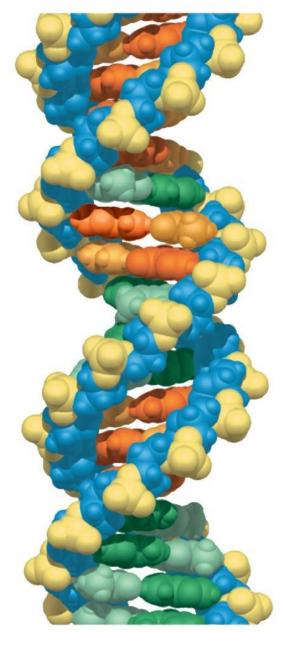

Soon Chun Hyang University College of Natural Sciences

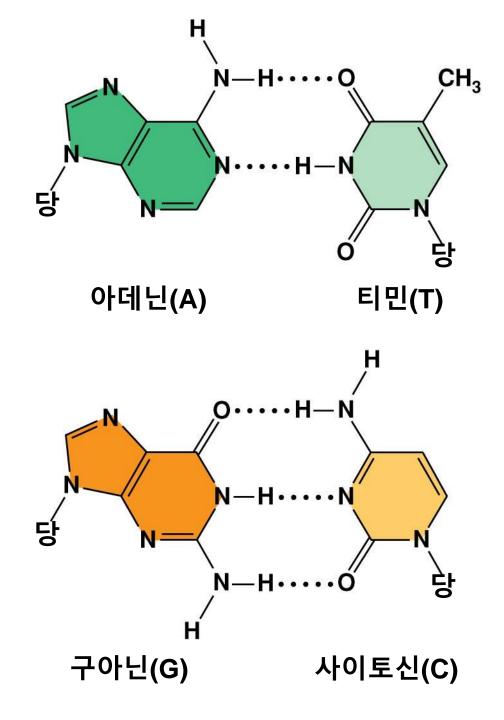


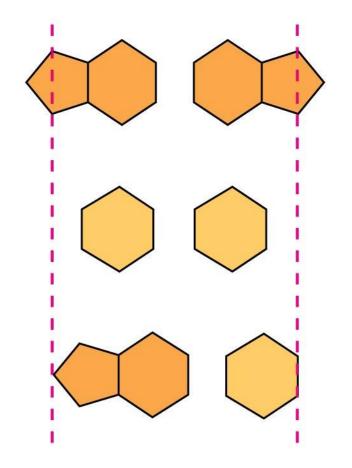



당-인산 골격 질소 함유 염기 5′ 말단 CH3 H_{\searrow} 티민(T) 아데닌(A) 사이토신(C) 구아닌(G) 3′ 말단 **DNA**

뉴클레오타이드

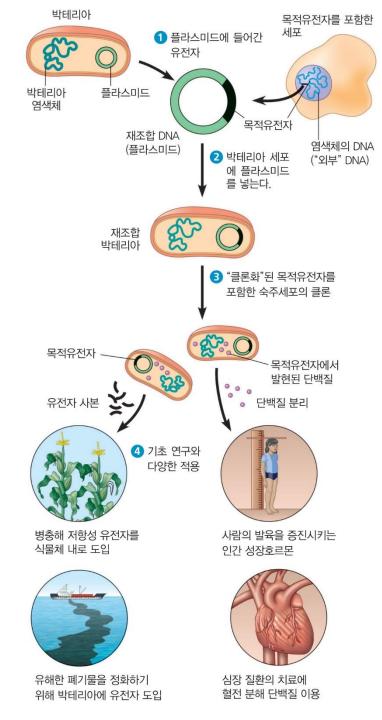






(b) 부분적인 화학구조

(c) 공간채움 모형



퓨린 + 퓨린: 너무 넓음

피리미딘 + 피리미딘: 너무 좁음

퓨린 + 피리미딘: X선 자료와 부합하는 넓이

유전자와 유전체 편집

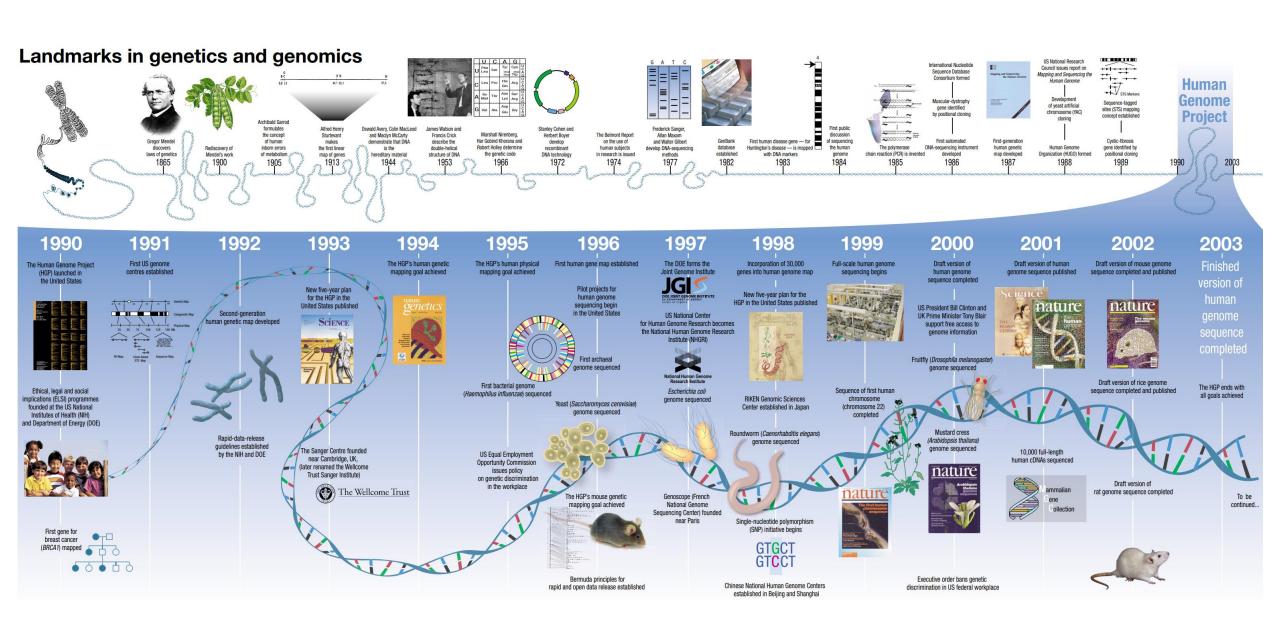
- 과거 5년 동안, 생물학자들은 CRISPR-Cas9 시스템이라고 하는 강력하고 새로운 기술을 개발하였다.
- Cas9 은 표적 유전자에 상보적인 가이드 RNA에 의해 지시 된대로 이중 가닥 DNA 분자를 절단하는 핵가수분해효소이다.
- 연구자들은 어떤 유전의 기능을 결정하기 위하여 그 유전자를 "녹아웃 (knock out)"
 (망가뜨리다) 시키는데 이 시스템으로 사용해 왔다.

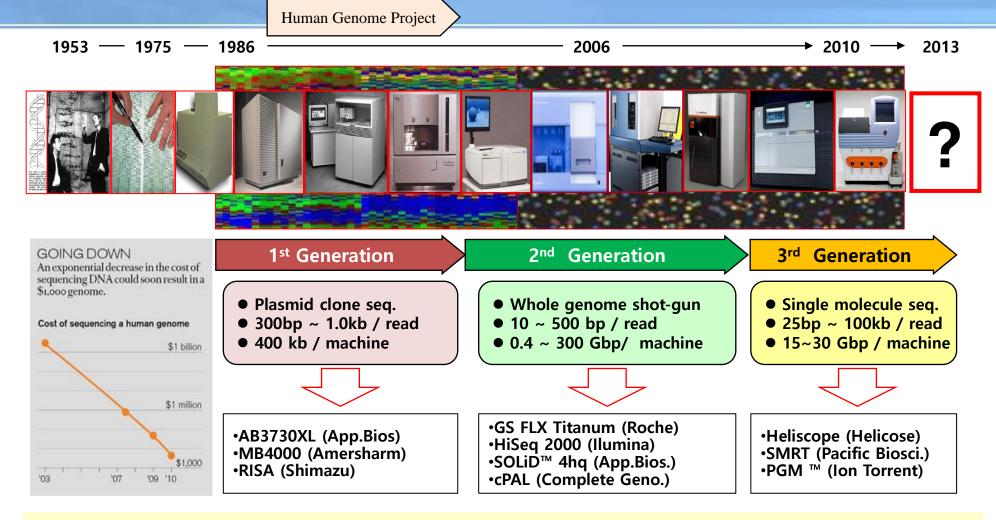
에마누엘 샤르팡티에 (Emmanuelle Charpentier) 제니퍼 다우드나 (Jennifer A. Doudna)

2020년 Nobel Prize



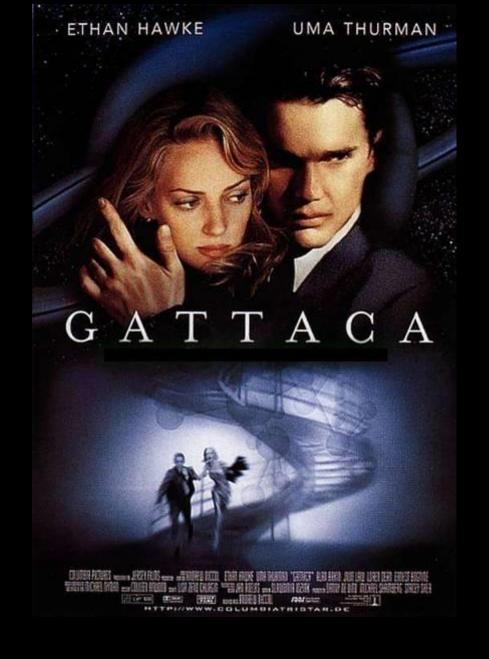
노벨화학상


- 또한, 연구자들은 CRISPR-Cas9 시스템을 수정하여 하나의 돌연변이가 있는 유전자를 복구하였다.
- 2014년 한 그룹의 연구자는 이 시스템을 사용하여 생쥐에서 돌연변이 유전자를 성공적으로 교정했다고 보고했다.
- CRISPR 기술은 연구자와 의사들간에 광범위하게 흥분을 불러 일으켰다.


크리스퍼 유전자 가위 기술을 개발해 올해 노벨 화학상 수상자로 선정된 제니퍼 다우드나 교수./NIH

EBS 미래강연Q 2017년 9월 14일 : 김창경(한양대) 교수편

Milestone of genetic analysis system

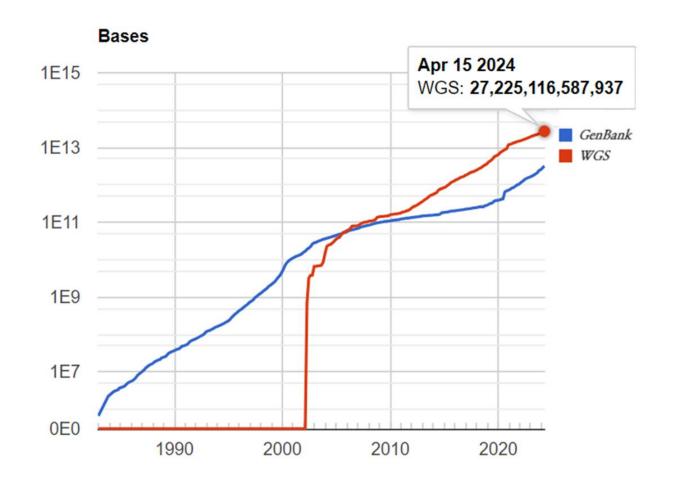


The Quest for the \$1,000 Human Genome

The New Hork Times

Decoding a person's genome is at present far too costly to be a feasible medical procedure. But the goal now being pursued by the N.I.H. and by several manufacturers, including the company decoding Dr. Watson's DNA, is to drive the costs of decoding a human genome down to as little as \$1,000. At that price, it could be worth decoding people's genomes in certain medical situations and, one day, even routinely at birth.

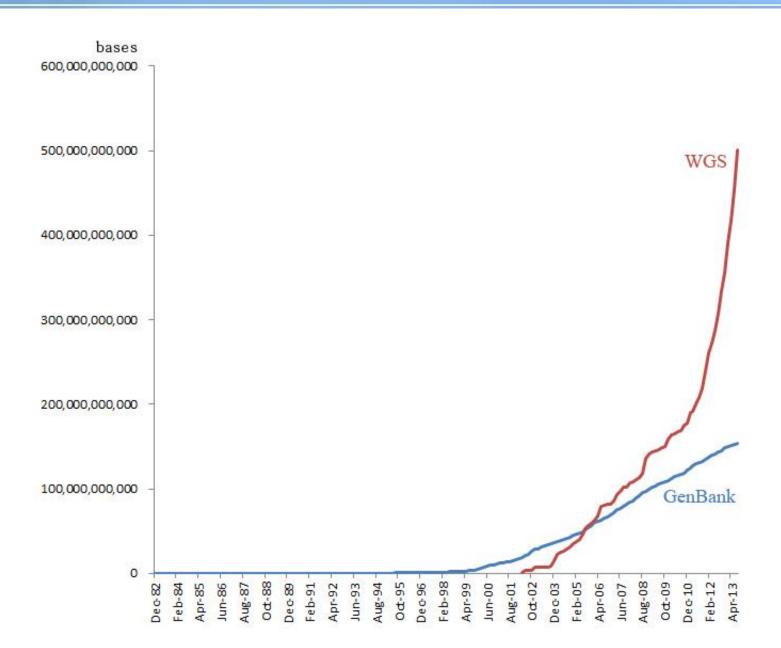
Published: July 18, 2006

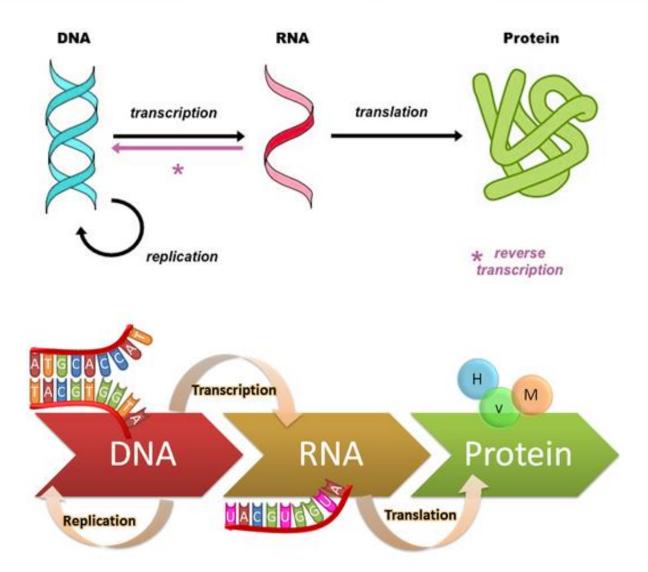


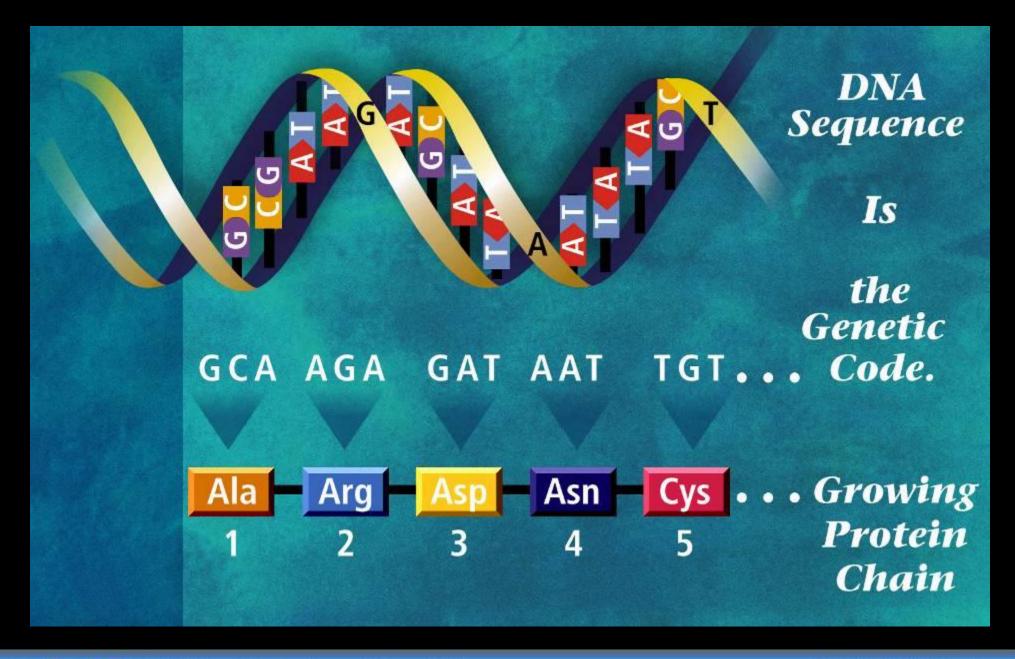
Full genome sequencing takes only 30 min -> 3 min

염기서열 분석기의 발전

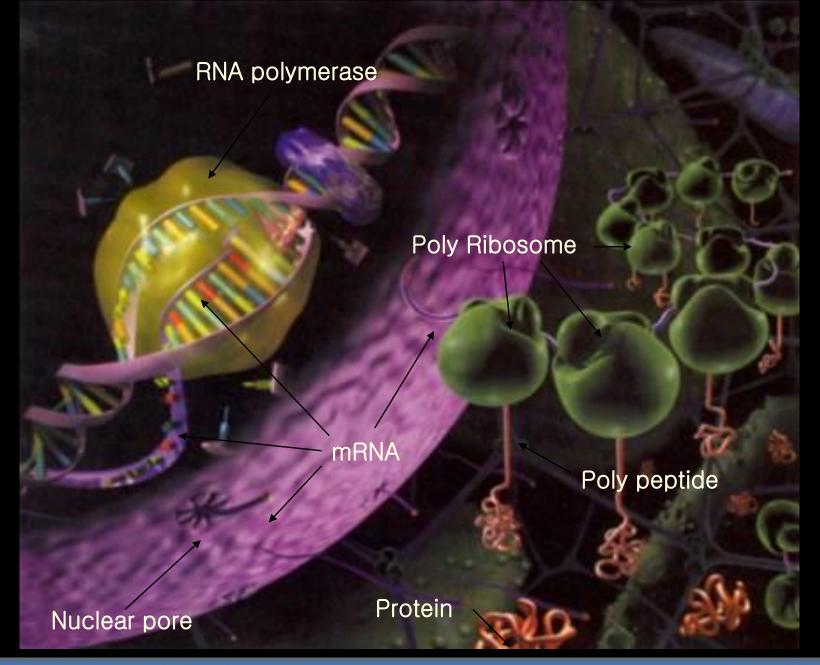
	1세대 염기서열분석기	2세대 염기서열 분석기 (NGS 1세대)			3세대 염기서열 분석기 (NGS 2세대)		
장비사진							
방식	Sanger sequencing	454 Roche GS-FLX+ system	Illumina Hi-seq series	ABI Solid	Ion Torrent sequencing	PacBio SMRT (Single-molecule real-time sequencing)	Oxford Nanopore
	체인 종결자 방식	Pyrosequencing	합성에 의한 서열분석법	Ligation 방식의 서열분석	Ion semiconductor 방식	단일분자 실시간 서열분석	Single Molecule sequencers
Read length	400~900 bp	700 bp (최대 1,000 bp 까지)	2x150 bp	50+35 또는 50+50 bp	400 bp 이상	평균 14,000 bp 최대 40,000 bp 이상	48,000 bp 이상
Accuracy	99.90%	99.997%	97%	99.90%	98%	consensus accuracy → 99.999% single-read accuracy → 99%	96%
Reads per run	384	1 million	up to 5 billion	1.2 to 1.4 billion	up to 80 million	50,000 per SMRT cell 또는 400 Mb 이상	6GB(standard) or 42GB(fast mode)
Time per run	20분~3시간	23 시간	1일~3.5일(HiSeq 3000/HiSeq 4000) 7시간~6일((HiSeq 2500)	1~2주	2 시간	30분~2시간	1분~48시간
1 million bp 읽는비용 (US\$)	\$2,400	\$10	약 \$0.02	\$0.13	\$1	\$0.75-\$1.50	\$0.099
장점	분석서열 길이가 길고 많은 응용프로그램 활용가능	속도가 빠르고 분석서열 길이가 길다.	분석된 서열 데이터 량이 많다	분석 비용이 싸다	비교적 장비가격이 싸고, 분석속도가 빠름	가장 길게 읽는 장비이며 분석속도가 빠름	비교적 장비가격이 싸고, 간단함
단점	대량서열 분석시 분석비용이 비쌈	분석비용이 타 장비에 비해 비싼 편이며, Homo polymer sequencing error 有	장비가격이 매우 비싸다	다른 방식에 비해 분석속도가 매우 느리며 분석된 서열 길이가 짧다	Homo polymer sequencing error 有	분석비용은 적당한 편이나 장비가격이 매우 비쌈	





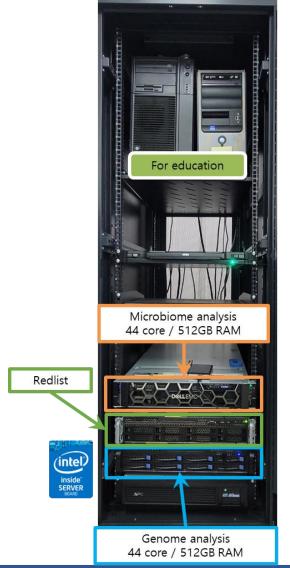

CENTRAL DOGMA

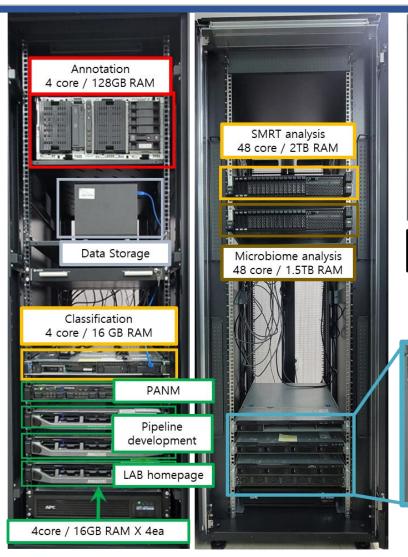
THE STATE OF THE S



LIVE OF THE PROPERTY OF THE PR

SCH





기초과학 연구역량 강화사업 핵심연구지원센터

Machine Learning (64 core / 128GB RAM)

Classification(old) 4 core / 16GB RAM

Transcriptome analysis 32 core / 1TB RAM

